Structure of Caesium 3,3'-commo-Bis(decahydro-8-iodo-1,2-dicarba-3-cobalta-closo-dodecaborate)(1-)

By Peter Sivý
Faculty of Chemical Technology, Slovak Technical University, Department of Chemical and Technical Physics and Nuclear Technique, Jánska 1, 81237 Bratislava, Czechoslovakia

Anton Preisinger and Oswald Baumgartner

Institute of Mineralogy, Crystallography and Structural Chemistry, Technical University, Getreidemarkt 9, A-1060 Vienna, Austria

Fedor Valach and Branislay Koreñ

Faculty of Chemical Technology, Slovak Technical University, Department of Chemical and Technical Physics and Nuclear Technique, Jánska 1, 81237 Bratislava, Czechoslovakia
and Ľubomí Mátel
Department of Nuclear Chemistry, Comenius University, 81245 Bratislava, Czechoslovakia
(Received 19 February 1985; accepted 27 August 1985)

Abstract

Cs}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~B}_{9} \mathrm{I}\right)_{2}\right], M_{r}=708 \cdot 4\), monoclinic, $P 2_{1} / n, a=6.813$ (1), $b=14.656$ (1), $c=10.637$ (1) \AA, $\beta=101.45(1)^{\circ}, \quad V=1041.0 \AA^{3}, Z=2, \quad D_{m}=2 \cdot 24$, $D_{x}=2.26 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$ $5.44 \mathrm{~mm}^{-1}, F(000)=644, T=293 \mathrm{~K}$. Final $R=0.025$ for 1856 observed reflections. A double-cage anion with Co at a centre of symmetry creates a symmetric π sandwich complex. The Cs^{+}cation is situated at another, crystallographically independent, centre of symmetry. The $\mathrm{B}(8)-\mathrm{I}$ bond distance is 2.205 (5) \AA. It is shown that ligand pseudosymmetry has no effect on the slip distortion of carbametallaboranes.

Introduction. The synthesis of the title compound has been described (Mátel, Macášek, Rajec, Heřmánek \& Plešek, 1982). Previously we have investigated caesium salts of this type from the aspect of slip distortion (Sivý, Preisinger, Baumgartner, Valach, Koreñ \& Mátel, 1986) as defined by Wing (1968). In this paper we deal with the effect of ligand pseudosymmetry on the slip distortion of two-cage carbametallaboranes.

Experimental. Sample recrystallized from a solution of acetone and distilled water by slow evaporation at laboratory temperature, D_{m} by flotation in $\mathrm{CHBr}_{3} /$ CCl_{4}, prismatic crystal with dimensions $0.12 \times 0.12 \times$ 0.22 mm ; Philips PW 1100 diffractometer, graphite monochromator, $\theta / 2 \theta$ scan, $2 \theta_{\text {max }}=55^{\circ}$, scan speed $0.033^{\circ} \mathrm{s}^{-1}$; 17 reflections with $4.79<2 \theta<12.94^{\circ}$ used for refinement of lattice constants; absorption corrections applied, maximum and minimum transmission factors: $0.5953,0.5036$; index range $-8 \leq h \leq 8$,

0108-2701/86/010028-03\$01.50
$0 \leq k \leq 19,0 \leq l \leq 13$; three standard reflections, variation $3.0 \% ; 2618$ reflections measured, 2393 unique, $R_{\text {int }}=0.019,1856$ with $I \geq 3 \sigma(I)$ used for structure analysis; coordinates of I and Cs obtained from Patterson map; Co and other non- H atoms located from Fourier syntheses; heavy atoms refined by full-matrix least squares using F values anisotropically, C and B isotropically; unit weights; C atoms selected as two neighbouring atoms with the lowest values of thermal coefficients ($U=0.015-0.019 \AA^{2}$). A weighted difference Fourier synthesis $\left\{w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.001476\right.\right.$ F_{o}^{2}] provided positions of H atoms lexcept $\mathrm{H}(2)$ (calculated)], refined isotropically. Maximum positive and maximum negative electron densities in final difference map 0.8 and $-0.7 \mathrm{e} \AA^{-3}$. Final $R=0.025$, $w R=0.031 .(\Delta / \sigma)_{\max }$ in final refinement cycle 0.055 (H atom); scattering factors and $f^{\prime}, f^{\prime \prime}$ (for heavy atoms) from International Tables for X-ray Crystallography (1962). Calculations performed with XRA Y72 (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972) using an M4030-1 computer, Slovak Technical University, Bratislava, Czechoslovakia.

Discussion. The atom coordinates are shown in Table 1.* Bond distances and selected bond angles around Co and I , and average values of other types of angles are

[^0]© 1986 International Union of Crystallography
listed in Table 2; the atomic numbering is shown in Fig. 1. A view of the structure of the unit cell is shown in Fig. 2.

Table 1. Atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

$U_{\mathrm{eq}}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} \cdot \mathrm{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cs	0.5	0.5	0	0.0617 (2)
1	1.0730 (1)	0.5772 (1)	0.1767 (1)	0.0403 (1)
Co	1.0	0.5	0.5	$0 \cdot 0190$ (2)
C(1)	1.0836 (5)	0.3677 (2)	0.5318 (4)	0.023 (1)
C(2)	0.8431 (6)	0.3816 (3)	0.4833 (4)	0.026 (1)
B(4)	1.2160 (6)	0.4198 (3)	0.4316 (4)	0.026 (1)
B(5)	$1 \cdot 1817$ (7)	0:2991 (3)	0.4316 (5)	0.030 (1)
B(6)	0.9461 (8)	0.2757 (3)	0.4688 (5)	0.034 (1)
B(7)	0.7900 (7)	0.4434 (3)	0.3470 (4)	0.027 (1)
B(8)	1.0280 (6)	0.4658 (3)	$0 \cdot 3074$ (4)	0.025 (1)
B(9)	$1 \cdot 1422$ (7)	0.3592 (3)	$0 \cdot 2845$ (5)	0.029 (1)
B(10)	0.9750 (7)	0.2702 (3)	0.3081 (5)	0.033 (1)
B(11)	0.7588 (7)	0.3227 (3)	0.3470 (5)	0.034 (2)
B(12)	0.8783 (7)	0.3731 (3)	$0 \cdot 2322$ (4)	0.028 (1)

Fig. 1. The $\left.\left[\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)_{2}\right)_{2} \mathrm{Co}\right]^{-}$anion with atom labelling (H atoms omitted).

Fig. 2. Projection of the structure on (100).

The Cs^{+}cation is 'ion-bonded' to the complex $\left[\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10} \mathrm{I}\right)_{2} \mathrm{Co}\right)^{-}$anion. The nearest atoms to Cs^{+}are $\mathrm{H}(12) 2.95$ (8) \AA and $\mathrm{B}(12) 3.697$ (10) \AA. The closest intermolecular contacts of each principal type are $\mathrm{I} \cdots \mathrm{H}=2.85(5), \mathrm{C} \cdots \mathrm{H}=3.06$ (5), $\mathrm{B} \cdots \mathrm{H}=2.74$ (5), and $\mathrm{H} \cdots \mathrm{H}=2.53$ (7) \AA.

Table 2. Bond distances (\AA) and selected angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Co}-\mathrm{C}(1)$	$2.030(3)$	$\mathrm{B}(5)-\mathrm{B}(6)$	$1.761(8)$
$-\mathrm{C}(2)$	$2.027(4)$	$-\mathrm{B}(9)$	$1.769(8)$
$-\mathrm{B}(4)$	$2.122(7)$	$\mathrm{B}(6)-\mathrm{B}(11)$	$1.768(11)$
$-\mathrm{B}(7)$	$2.112(12)$	$\mathrm{B}(7)-\mathrm{B}(8)$	$1.785(8)$
$-\mathrm{B}(8)$	$2.154(5)$	$-\mathrm{B}(11)$	$1.782(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.630(7)$	$-\mathrm{B}(12)$	$1.791(8)$
$-\mathrm{B}(4)$	$1.707(8)$	$\mathrm{B}(8)-\mathrm{B}(9)$	$1.783(6)$
$-\mathrm{B}(5)$	$1.696(8)$	$-\mathrm{B}(12)$	$1.789(8)$
$-\mathrm{B}(6)$	$1.702(7)$	$\mathrm{B}(9)-\mathrm{B}(12)$	$1.785(9)$
$\mathrm{C}(2)-\mathrm{B}(6)$	$1.723(6)$	$\mathrm{B}(10)-\mathrm{B}(5)$	$1.776(12)$
$-\mathrm{B}(7)$	$1.687(7)$	$-\mathrm{B}(6)$	$1.761(8)$
$-\mathrm{B}(11)$	$1.687(8)$	$-\mathrm{B}(9)$	$1.782(7)$
$\mathrm{B}(4)-\mathrm{B}(5)$	$1.784(6)$	$-\mathrm{B}(11)$	$1.782(8)$
$-\mathrm{B}(8)$	$1.780(11)$	$-\mathrm{B}(12)$	$1.775(7)$
$-\mathrm{B}(9)$	$1.783(8)$	$\mathrm{B}(11)-\mathrm{B}(12)$	$1.759(9)$

$\mathrm{C}(1)-\mathrm{H}(1)$	$0.93(4)$
$\mathrm{C}(2)-\mathrm{H}(2)$	$1.02(6)$
$\mathrm{B}(4)-\mathrm{H}(4)$	$1.09(5)$
$\mathrm{B}(5)-\mathrm{H}(5)$	$1.10(4)$
$\mathrm{B}(6)-\mathrm{H}(6)$	$0.95(4)$
$\mathrm{B}(7)-\mathrm{H}(7)$	$1.10(4)$
$\mathrm{B}(9)-\mathrm{H}(9)$	$1.11(5)$
$\mathrm{B}(10)-\mathrm{H}(10)$	$1.17(7)$
$\mathrm{B}(11)-\mathrm{H}(11)$	$1.13(5)$
$\mathrm{B}(12)-\mathrm{H}(12)$	$1.06(4)$
$\mathrm{C}(1)-\mathrm{Co}-\mathrm{C}(2)$	$47.4(1)$
$-\mathrm{B}(4)$	$48.5(2)$
$-\mathrm{B}(7)$	$83.0(2)$
$-\mathrm{B}(8)$	$82.0(2)$
$\mathrm{C}(2)-\mathrm{Co}-\mathrm{B}(4)$	$83.4(2)$
$-\mathrm{B}(7)$	$48.0(2)$
$-\mathrm{B}(8)$	$82.1(2)$

Average bond lengths within the

$\left[\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10} \mathrm{I}\right)_{2} \mathrm{Co}\right]^{-}$anion		
Bond type	No.	Av. ${ }^{a}$
Co-C	2	$2.029(2)$
Co-B	3	$2.129(22)$
C-C	1	$1.630(7)^{b}$
C-B	6	$1.700(14)$
B-B	18	$1.778(10)$
C-H	2	$0.98(6)$
B-H	8	$1.09(6)$

$\mathrm{B}(4)-\mathrm{Co}-\mathrm{B}(7)$	$85.9(2)$
$-\mathrm{B}(8)$	$49.2(2)$
$\mathrm{B}(7)-\mathrm{Co}-\mathrm{B}(8)$	$49.5(2)$
$\mathrm{I}-\mathrm{B}(8)-\mathrm{Co}$	$118.5(2)$
$-\mathrm{B}(4)$	$125.4(3)$
$-\mathrm{B}(7)$	$122.1(2)$
$-\mathrm{B}(9)$	$116.3(3)$
$-\mathrm{B}(12)$	$114.8(2)$

Average bond angles around all pentagonal rings
Average bond angles around
all triangular faces

Angle type	No.	Av. ${ }^{\text {a }}$
$\mathrm{C}-\mathrm{Co}-\mathrm{C}$	1	47.4 (1) ${ }^{\text {b }}$
$\mathrm{C}-\mathrm{Co}-\mathrm{B}$	2	48.3 (0.3)
$\mathrm{B}-\mathrm{Co}-\mathrm{B}$	2	49.3 (0.2)
Co-C-C	2	66.3 (0.1)
Co-C-B	2	68.6 (0.1)
Co-B-C	2	63.2 (0.3)
Co-B-B	4	65.3 (1.3)
$\mathrm{C}-\mathrm{C}-\mathrm{B}$	2	61.6 (0.9)
$\mathrm{C}-\mathrm{B}-\mathrm{C}$	1	56.8 (2) ${ }^{\text {b }}$
B-C-B	4	63.0 (0.6)
C-B-B	8	58.5 (0.7)
B-B-B	30	60.0 (0.4)
	60	

Angle type	No.	Av. a
C-Co-B	4	$82.6(0.7)$
B-Co-B	1	$85.9(2)^{b}$
Co-C-B	4	$125.6(1.1)$
Co-B-B	6	$117.6(1.0)$
C-C-B	4	$111.5(0.4)$
B-C-B	2	$115.3(0.1)$
C-B-B	12	$104.4(0.6)$
B-B-B	27	$108.0(0.5)$
	60	

(a) E.s.d.'s for averaged bond lengths and angles calculated from the equation $\delta=\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} /(n-1)\right]^{1 / 2}$, where x_{i} is the i th value and \bar{x} is the mean of the n values. (b) Estimated standard deviation.

The slip-distortion value (Wing, 1968), the distance between the centroid of the least-squares plane defined by atoms $C(1), C(2), B(4), B(7)$, and $B(8)$ (Fig. 1) and the projection of the Co atom onto this plane, is 0.061 (2) \AA. The title compound thus belongs to the class of symmetric π-sandwich complexes.

Two-cage carbametallaboranes, not combined with a bond, with two neighbouring C atoms in each cage directly bonded to the metal were investigated with respect to the ligand pseudosymmetry. Let d be the distance between the atom in the structure and its projection onto the selected plane, and $\sigma(d)$ the corresponding estimated standard deviation. The two atoms on the opposite sides of this plane are mirror images (on statistical significance level of 0.05) if $\left|\left|d_{1}\right|-\left|d_{2}\right|\right| \leq 1.96 \sqrt{\sigma^{2}\left(d_{1}\right)+\sigma^{2}\left(d_{2}\right)}$. The chosen least-squares plane is defined by the atoms $\mathrm{Co}, \mathrm{B}(8)$, $B(6)$, and $B(10)$ (Fig. 1). If for all four pairs of atoms $[B(4), B(7) ; B(5), B(11) ; B(9), B(12) ; C(1), C(2)]$ the corresponding distances satisfy this condition, the
selected plane can be considered a mirror plane $m\left(C_{s}\right)$ of the icosahedron. Carrying out this test for ligand pseudosymmetry on the two-cage carbametallaboranes listed by Sivy et al. (1986) shows that there is no correlation between the results of the test and the magnitudes of the slip distortion.

References

International Tables for X-ray Crystallography (1962). Vol. III, pp. 202, 215. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Mátel, Ĭ., MacáSéek, F., Rajec, P., Heřmánek, S. \& Pleséek, J. (1982). Polyhedron, 1, 511-519.

Sivý, P., Preisinger, A., Baumgartner, O., Valach, F., Koreñ, B. \& MÁtel, L̆. (1986). C42, 24-27.

Stewart, J. M., Kruger, G. J., Ammon, h. L., Dickinson, C. W. \& Hall, S. R. (1972). The XRAY72 system-version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Wing, R. M. (1968). J. Am. Chem. Soc. 90, 4828-4834.

Structure of Caesium 8-Iodo-3,3'-commo-bis(decahydro-1,2-dicarba-3-cobalta-closo-dodecaborate)(1-)*

By Peter Sivý
Faculty of Chemical Technology, Slovak Technical University, Department of Chemical and Technical Physics and Nuclear Technique, Jánska 1, 81237 Bratislava, Czechoslovakia

Anton Preisinger and Oswald Baumgartner

Institute of Mineralogy, Crystallography and Structural Chemistry, Technical University, Getreidemarkt 9, A-1060 Vienna, Austria

Fedor Valach and Branislav Koreñ
Faculty of Chemical Technology, Slovak Technical University, Department of Chemical and Technical Physics and Nuclear Technique, Jánska 1, 81237 Bratislava, Czechoslovakia
and Ľubomír Mátel
Department of Nuclear Chemistry, Comenius University, 84215 Bratislava, Czechoslovakia
(Received 19 April 1985; accepted 27 A ugust 1985)

Abstract

Cs}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{11} \mathrm{~B}_{9}\right)\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~B}_{9} \mathrm{I}\right)\right], M_{r}=582 \cdot 53\), monoclinic, $\quad P 2_{1} / n, \quad a=20.721$ (4), $\quad b=13.167$ (1), $c=7.462$ (1) $\AA, \beta=95.00(1)^{\circ}, V=2028 \cdot 1 \AA^{3}, Z=$ $4, \quad D_{m}=1.91, \quad D_{x}=1.91 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=$

^[* Alternative name: caesium (η-undecahydrido-7,8-dicarba-nidoundecaborato) (η-decahydrido-10-iodo-7,8-dicarba-nido-undecaborato) cobaltate(1-).]

$0.71069 \AA, \quad \mu=3.89 \mathrm{~mm}^{-1}, \quad F(000)=1080, \quad T=$ 293 K . Final $R=0.045$ for 2579 observed reflections. The molecule of closo-carbacobaltaborane consists of two icosahedra around the Co atom, creating a π-sandwich conformation. The two neighbouring C atoms of the icosahedral fragments were distinguished unambiguously from the B atoms. In the structure there are two enantiomorphic rotational isomers.

[^0]: * Lists of structure amplitudes, anisotropic thermal parameters, H -atom parameters and details of least-squares planes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42462 (19 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

